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Power Series

1. In each of the following cases, determine the values of x for which the power series converges.
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2. For each of the following power series determine the interval and radius of convergence.
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3. Write the given function as a power series and give the interval of convergence.

(a) f (x) =
x

1− 8x

(b) f (x) =
−12x2

1 + 6x7

(c) f (x) =
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(d) f (x) =
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4. Give a power series representation for (the derivative of) the following function.

(a) g (x) =
x10

2− x2 (b) g (x) =
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5. Give a power series representation for (the integral of) the following function.

(a) h (x) =
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6. Make up a power series whose interval of convergence is

(a) (−3, 3) (b) (−2, 0) (c) (1, 5)

7. (Uniqueness of convergent power series.) Show that if two power series
∞

∑
n=0

anxn and
∞

∑
n=0

bnxn

are convergent and equal for all values of x in an open interval (−c, c), then an = bn for all n.

8. Find the sum of the series
∞

∑
n=0

n2/2n.

(Hint: To find the sum of this series, express 1/(1− x) as a geometric series, differentiate both sides
of the resulting equation with respect to x, multiply both sides of the result by x, differentiate again,
multiply by x again, and set x equal to 1/2.)
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